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Abstract. The aim of the paper is to investigate the set, Cl(R[x]), of all clean
elements in a polynomial ring R[x]. In particular, we present necessary and

sufficient conditions for the set Cl(R[x]) to be a subring of R[x] and show that
if R is a clean 2-primal ring then Cl(R[x]) always forms a subring. We also

show that the Köethe’s problem has a positive solution if and only if Cl(R[x])

is a subring of R[x] for any clean ring R such that R/N(R) is reduced, where
N(R) denotes the nil radical of R.

Introduction

Throughout this article R will denote a unital associative ring. An element
a ∈ R is called clean if a can be expressed as e + u, where e is an idempotent
and u is a unit of R. A ring R is clean if all its elements are clean. This notion
was introduced by Nicholson [N] in relation to exchange rings. It was proved that
every exchange ring is clean. The class of clean rings is quite large and includes, for
example, semiperfect rings. For more information about clean rings we refer the
reader to [NZ].

Han and Nicholson investigated the behavior of clean property under various
ring extensions (see [HN]). In particular, they observed that if R is a clean ring
then the power series ring R[[x]] is always clean but the polynomial ring R[x] is
never clean, as the element x is never clean in R[x]. It is also clear that the clean
elements of a ring need not form a subring, even in the case the ring is commutative
(e.g. the clean elements of Z do not form a subring). Samei [S] proved that for a
certain class of commutative rings, a ring is clean if and only if the set of all its
clean elements is closed under addition.

The aim of the paper is to determine the set Cl(R[x]) of all clean elements of
R[x]. We show that Cl(R[x]) = Cl(R) + B(R)[x]x, where B(R) denotes the prime
radical of R, if and only if R is 2-primal, that is, when R/B(R) is a reduced ring
(see Theorem 1.5). This implies that if R is a 2-primal clean ring, then the set
Cl(R[x]) is a subring of R[x]. In Theorem 2.14 we give necessary and sufficient
conditions for Cl(R[x]) to be a subring. Finally, in Theorem 2.15, we show that the
positive solution to the Köthe’s problem is equivalent to the statement that the set
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Cl(R[x]) is a subring of R[x] for any clean ring R such that R/N(R) is reduced,
where N(R) denotes the nil radical of R. We also give some examples.

Throughout the paper Cl(R), U(R), and E(R) will stand for the sets of all
clean elements, units, and idempotents of the ring R, respectively and J(R), N(R),
and B(R) will denote the Jacobson radical, the upper nil radical, and the prime
radical of R.

1. 2-primal coefficient ring

Recall that a ring is called abelian if its idempotents are central. Note that
every reduced ring is abelian.

We will frequently use the following observation.

Lemma 1.1. (Lemma 1, [KLM]) Let e(x) = e0 +e1x . . .+enx
n be an idempo-

tent in R[x]. If e0 commutes with all ei, 0 ≤ i ≤ n, then e(x) = e0. In particular,
if R is abelian then E(R[x]) = E(R).

We begin with elementary lemmas.

Lemma 1.2. Let R be a ring. Suppose that u ∈ U(R) and a ∈ J(R). Then
u+ a ∈ U(R). In particular, for any clean element c ∈ R, the element c+ a is also
clean, that is, Cl(R) + J(R[x]) ⊆ Cl(R[x]).

Proof. Since a ∈ J(R), we have u−1a ∈ J(R). Thus u + a = u(1 + u−1a) is
invertible being a product of invertible elements. The second part of the lemma is
a straightforward consequence of the first statement. �

The following example shows that the inclusion Cl(R) + J(R[x]) ⊆ Cl(R[x])
can be strict, in general.

Example 1.3. Let R = M2(Q) and a =

[
1 1
1 1

]
, b =

[
1 2
3 4

]
∈ R. Since

det(ax + b) ∈ Q \ {0}, the element ax + b is invertible in M2(Q[x]) = R[x], so it is
clean. Clearly J(R) = 0.

Observe that if w(x) = w0 + w1x . . . + wnx
n ∈ R[x] is invertible (respectively,

is an idempotent or a clean element) in R[x], then so is the element w0 in R. Hence
we have the following lemma.

Lemma 1.4. If r ∈ R is clean in R[x], then it is clean in R. In particular,
Cl(R[x]) ∩R = Cl(R).

The following theorem gives a characterization of 2-primal rings in terms of
clean polynomials. Recall that a ring R is called 2-primal if R/B(R) is a reduced
ring, where B(R) denotes the prime radical of R. Equivalently, R is 2-primal if and
only if B(R) is equal to the set of all nilpotent elements of R. It is well-known that
the ring R is 2-primal if and only if every minimal prime ideal P of R is completely
prime, that is, R/P is a domain.

Theorem 1.5. For any ring R, the following are equivalent:

(i) R is 2-primal;
(ii) R[x] is 2-primal;

(iii) Cl(R[x]) = Cl(R) + B(R)[x]x;
(iv) U(R[x]) = U(R) + B(R)[x]x.
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Proof. The equivalence (i)⇔(ii) is easy and well-known.
(i)⇒(iii) Let C = Cl(R) + B(R)[x]x. Since B(R)[x] = B(R[x]) ⊆ J(R[x]),

Lemma 1.2 shows that C ⊆ Cl(R[x]).
Let c(x) =

∑n
i=0 cix

i ∈ Cl(R[x]). We then have c0 ∈ Cl(R). Let P be a
minimal prime ideal of R. Then the canonical image c̄(x) of c(x) in (R/P )[x] is
also clean. Since R is 2-primal, R/P is a domain. Hence E((R/P )[x]) = {0, 1},
U((R/P )[x]) = U(R/P ), and Cl(R/P )[x] ⊆ Cl(R/P ). This means that, for i ≥ 1,
ci ∈ P and hence c(x) ∈ R + P [x]x. Since this is true for any minimal prime ideal
P , we obtain that c(x) ∈ R+B(R)[x]x. This means that c(x) ∈ Cl(R) +B(R)[x]x
as c0 ∈ Cl(R).

(iii)⇒ (iv) Using Lemma 1.2 and the statement (iii) we get U(R)+B(R)[x]x ⊆
U(R[x]) ⊆ Cl(R[x]) = Cl(R) +B(R)[x]x. Since the independent term of an invert-
ible polynomial is invertible in R, we conclude that U(R[x]) ⊆ U(R) + B(R)[x]x.

(iv)⇒(i) If a ∈ R is such that an = 0 then 1 + xa ∈ U(R[x]) and (iv) shows
that a ∈ B(R), that is, R is 2-primal. �

Remarks 1.6. (a) Using the equivalence (i)⇔(ii) in the above theorem
it is standard to see that all statements of Theorem 1.5 remain valid
if we replace the single indeterminate x by a finite set of commuting
indeterminates.

(b) Since B(R[x, x−1]) = B(R)[x, x−1], it is easy to check that R is 2-primal if
and only if the Laurent polynomial ring R[x, x−1] is 2-primal. Obviously
the analogous of statements (iii) and (iv) of Theorem 1.5 are not true in
the case of R[x, x−1].

(c) Note that in the Laurent polynomial ring (Z/6Z)[x, x−1] we have (2x +
3x−1)(3x − 4x−1) = 1. This shows that U(R[x, x−1]) is not necessarily
homogeneous even if R is a commutative reduced ring.

Corollary 1.7. For a ring R the following are equivalent:

(i) R is reduced;
(ii) U(R[x]) = U(R);
(iii) Cl(R[x]) = Cl(R).

Proof. The implication (i)⇒(iii) is given by Theorem 1.5.
Since U(R[x]) ⊆ Cl(R[x]), (iii) implies (ii).
Finally suppose that (ii) holds. If a ∈ R is nilpotent then 1− ax ∈ U(R[x]) =

U(R), that is, a = 0 and R is a reduced ring. �

As a another consequence of Theorem 1.5 we also get the following corollary.

Corollary 1.8. Suppose R is 2-primal. Then Cl(R[x]) is a subring of R[x]
if and only if Cl(R) is a subring of R.

Since commutative rings are 2-primal, we have the following corollary.

Corollary 1.9. Suppose R is a commutative clean ring. Then the set Cl(R[x])
is a subring of R[x].

2. When Cl(R[x]) forms a subring of R[x]

We have seen that if R is a 2-primal clean ring, then the set Cl(R[x]) is always
a subring of R[x]. We begin this section with an example showing that the set of
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clean elements of a polynomial ring over a clean ring does not have to be a subring
in general. For this we need the following lemma.

Lemma 2.1. The set of all clean elements of the matrix ring Mn(R), n ≥ 2,
forms a subring if and only if Mn(R) is a clean ring.

Proof. Let {eij | 1 ≤ i, j ≤ n} denotes the set of matrix units in Mn(R).
Since nilpotent elements and idempotents are clean, the elements e1nr, eij , with
r ∈ R and 1 ≤ i, j ≤ n, are clean. Moreover these elements generate Mn(R) as a
ring. This gives the lemma. �

Example 2.2. Let K be a field and n ≥ 2. Then Mn(K) is a clean ring and
the set of clean elements of K[x] is equal K. Let us consider T = Mn(K[x]) '
Mn(K)[x]. Then T is not clean as a polynomial ring is never clean. Thus, by the
above lemma, the set Cl(Mn(K[x])) does not form a subring of the matrix ring
Mn(K[x]) as well of the polynomial ring Mn(K)[x].

Before we give more results on clean elements forming a subring, we give some
results on nilpotent polynomials. This will also lead to a relationship between
the description of the set of clean elements of a polynomial ring and the Köthe’s
problem.

Lemma 2.3. Let a = e + u, for some idempotent e and a unit u of R. If au−1

is a nilpotent element, then e = 1.

Proof. Suppose that au−1 = eu−1 + 1 is a nilpotent element. Then eu−1 =
au−1−1 is an invertible element of R such that (1− e)eu−1 = 0, that is, e = 1. �

Lemma 2.4. Let p(x) = a0 + a1x + . . . + anx
n ∈ R[x] be such that a0v is a

nilpotent element of R, for every v ∈ U(R). Then p(x) is a clean element of R[x]
if and only if 1− p(x) ∈ U(R[x]).

Proof. It is enough to prove the necessity of the condition. Suppose that p(x)
is clean. We can write p(x) = e(x) +u(x), where e(x) = e0 + . . .+ emxm ∈ E(R[x])
and u(x) = u0 + . . . + umxm ∈ U(R[x]). Then a0 = e0 + u0, where e0 ∈ E(R)
and u0 ∈ U(R). By the assumption, the element a0u

−1
0 is nilpotent. Thus, Lemma

2.3 implies that e0 = 1 and Lemma 1.1 then shows that e(x) = 1. Therefore,
1− p(x) = −u(x) ∈ U(R[x]). �

Proposition 2.5. Let l > 0 be a positive integer and f(x) ∈ R[x] be a polyno-
mial of degree deg f(x) < l. Then the following conditions are equivalent:

(i) xlf(x) ∈ Cl(R[x]);
(ii) f(x) is nilpotent;
(iii) 1− xlf(x) ∈ U(R[x]).

Proof. (i)⇒(ii) Suppose xlf(x) ∈ Cl(R[x]). Notice that the element A =∑∞
i=0 x

lif(x)i is well defined in the power series ring R[[x]] and A is the inverse of
1− xlf(x). However, Lemma 2.4 gives that 1− xlf(x) is invertible in R[x], that is,
A ∈ R[x]. Since, for any i ≥ 1, the degree of xlif(x)i is strictly smaller than the
degree of any monomial appearing in x(l+1)if(x)i+1, we conclude that there exists
n ∈ N such that xlif(x)i = 0, for all i ≥ n. The desired conclusion then follows.

Implications (ii)⇒(iii) and (iii)⇒(i) are obvious and hold without the assump-
tion on l. �
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Corollary 2.6. For any a ∈ R and n ≥ 1, the monomial axn ∈ R[x] is clean
if and only if axn − 1 is invertible if and only if a is nilpotent.

The following example shows that the equivalence in Proposition 2.5 is false if
l = deg f(x).

Example 2.7. Let R = M2(F2) be the ring of 2 × 2 matrices over the field

with two elements. Define elements a =

[
0 1
1 0

]
, b =

[
1 0
0 0

]
∈ R. It is easy to

check that (1 + ax + bx2)(1 + ax + (1 + b)x2) = 1. This shows that the polynomial
x(a + bx) is clean. It can be easily seen that a + bx is not nilpotent.

Remark 2.8. Corollary 2.6 implies that x ∈ R[x] is never clean. Hence, as is
well known, R[x] is never a clean ring.

Recall that N(R) denotes the nil radical of R. In general the description of
all clean as well as invertible elements of a polynomial ring seems to be a difficult
problem as the following theorem shows.

Theorem 2.9. For any ring R, the following conditions are equivalent:

(i) N(R)[x] = J(R[x]);
(ii) 1−N(R)[x] ⊆ U(R[x]);
(iii) N(R)[x] ⊆ Cl(R[x]).

Proof. Clearly (i)⇒(ii)⇒(iii).
(iii)⇒(i) It is known that the first statement is equivalent to N(R)[x] ⊆ J(R[x])

(then the equality holds). Let g(x) ∈ N(R)[x]. Then, for any f(x) ∈ R[x],
g(x)f(x) ∈ N(R)[x] ⊆ Cl(R[x]) and Lemma 2.4 shows that 1−g(x)f(x) ∈ U(R[x]),
that is, g(x) ∈ J(R[x]). �

Lemma 2.10. Suppose Cl(R) is a subring of R. Then:

(i) The factor ring Cl(R)/N(R) is reduced if and only if R/N(R) is a reduced
ring;

(ii) If R/N(R) is a reduced ring, then Cl(R[x]) ⊆ Cl(R)+N(R)[x] ⊆ Cl(R)[x].

Proof. (i) If the paper R/N(R) is reduced then its subring Cl(R)/N(R) is
also reduced.

Conversely suppose that Cl(R)/N(R) is a reduced ring and let a + N(R) ∈
R/N(R) be a nilpotent elenent. This means that there exists l ∈ N such that
al ∈ N(R), that is, a is a nilpotent element and so a ∈ Cl(R). The hypothesis then
gives a ∈ N(R) and shows that R/N(R) is a reduced ring.

(ii) Suppose now that Cl(R) is a subring of R and the ring R/N(R) is re-
duced. Let c(x) be an element in Cl(R[x]). Then the natural image c̄(x) of
c(x) in R[x]/N(R)[x] ∼= R/N(R))[x] is a clean element. Thus, by Corollary 1.7,
c̄(x) ∈ R/N(R). This means that c(x) ∈ Cl(R) + N(R)[x] and yields Cl(R)[x] ⊆
Cl(R) + N(R)[x]. The inclusion Cl(R) + N(R)[x] ⊆ Cl(R)[x] is clear as N(R) ⊆
Cl(R). �

In the following proposition we gather some necessary conditions for Cl(R[x])
to be a subring of R[x].

Proposition 2.11. Suppose that Cl(R[x]) is a subring of R[x]. Then:

(i) Cl(R) is a subring of R;
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(ii) Cl(R[x]) = Cl(R) + U(R[x]);
(iii) The set of nilpotent elements of R is an ideal of Cl(R);
(iv) R/N(R) is a reduced ring;
(v) Cl(R[x]) ⊆ Cl(R) + N(R)[x] ⊆ Cl(R)[x].

Proof. (i) Cl(R) is a subring of R, by Lemma 1.4.
(ii) Let f(x) =

∑n
i=0 fix

i ∈ Cl(R[x]). Since f0 ∈ Cl(R) ⊆ Cl(R[x]), we also
have f(x)−f0 ∈ Cl(R[x]). Let us write f(x)−f0 = e(x)+u(x) with e(x) ∈ E(R[x])
and u(x) ∈ U(R[x]). We must then have e(0)2 = e(0) = −u(0) ∈ U(R). This
shows that e(0) = 1 and Lemma 1.1 implies that e(x) = 1. Thus we get f(x) =
f0 + 1 + u(x) ∈ Cl(R) + U(R[x]). This shows that Cl(R[x]) ⊆ Cl(R) + U(R[x]).
The reverse inclusion is an obvious consequence of the hypothesis that Cl(R[x])
forms a subring.

(iii) Let a, b ∈ R be nilpotent elements and r ∈ Cl(R). Then the elements
ax, bx, being nilpotent, are clean. Thus, by assumption (a−b)x, rax, arx = (ax)r ∈
Cl(R[x]) and Corollary 2.6 implies that the set of all nilpotent elements of R is an
ideal of Cl(R).

(iv) The statement (iii) together with the inclusion N(R) ⊆ Cl(R) imply that
N(R) is equal to the set of all nilpotent elements of R, that is, R/N(R) is a reduced
ring.

(v) Statements (i) and (iv) together with Lemma 2.10 directly yield the result.
�

A matrix ring Mn(R) is never reduced if n ≥ 2. Thus, by the above proposition,
we have the following corollary (compare with Example 2.2).

Corollary 2.12. Let n ≥ 2. Then, for any ring R, the set Cl(Mn(R)[x]) does
not form a subring of Mn(R)[x].

Let us give an example showing that the inclusion Cl(R[x]) ⊆ Cl(R)[x] does
not always hold.

Example 2.13. Let R = M2(Z). Consider

a =

[
−7 −3
12 5

]
b =

[
12 5
0 0

]
c = a−1 =

[
5 3
−12 −7

]
d =

[
0 −5
0 12

]
.

It is easy to check that (a + bx)(c + dx) = 1 = (c + dx)(a + bx). Thus a + bx is
invertible (so clean). By Example 4.5 of [KL], the matrix b is not clean. This shows
that the inclusion Cl(R[x]) ⊆ Cl(R)[x] does not hold.

The above results lead to the following theorem which characterizes when
Cl(R[x]) forms a subring of R[x].

Theorem 2.14. Let R be any ring. Then the following conditions are equiva-
lent:

(i) The set Cl(R[x]) forms a subring of R[x];
(ii) Cl(R) is a subring of R and Cl(R[x]) = Cl(R) + N(R)[x].

Proof. (i)⇒(ii) Suppose Cl(R[x]) is a subring of R[x]. Then any polynomial
with nilpotent coefficients is clean. Hence Cl(R) + N(R)[x] ⊆ Cl(R[x]). The
reverse inclusion is given by Proposition 2.11 (v). The statement (i) from the same
proposition shows that Cl(R) is a subring of R, that is, (ii) holds.

The implication (ii)⇒(i) is a tautology. This completes the proof of the theo-
rem. �
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In the context of Proposition 2.11, one can wonder whether in the above theo-
rem one could add as an equivalent statement that Cl(R)/N(R) is a reduced ring.
It turns out, as the following theorem shows, that this is equivalent to a positive
solution of the Köthe problem. We state this result in case of clean rings to make
the statements easier.

Theorem 2.15. The following conditions are equivalent:

(i) The Köthe’s problem has a positive solution;
(ii) For any clean ring R, the set Cl(R[x]) forms a subring of R[x] if and only

if R/N(R) is a reduced ring;
(iii) For any clean ring R, the set Cl(R[x]) forms a subring of R[x], provided

R/N(R) is a reduced ring.

Proof. (i)⇒(ii) Suppose R is a clean ring. Proposition 2.11 shows that if
Cl(R[x]) is a subring then R/N(R) is a reduced ring. Hence we need only prove
that if the Köthe’s problem has a positive solution and R/N(R) is reduced, then
Cl(R[x]) is a subring of R[x]. Under these hypotheses, Corollary 1.7 shows that
Cl((R[x])/(N(R)[x])) = Cl((R/N(R))[x]) = Cl(R/N(R)). Therefore Cl(R[x]) ⊆
Cl(R) + N(R)[x]. Recall that the Köthe’s problem has a positive solution if and
only if J(R[x]) = N(R)[x], for any ring R. Hence, by (i) and Lemma 1.2, Cl(R) +
N(R)[x] ⊆ Cl(R[x]), for any ring R. Thus, by the above we get Cl(R[x]) =
Cl(R) + N(R)[x] and Theorem 2.14 shows that Cl(R[x]) forms a subring of R.

The implication (ii)⇒(iii) is a tautology.
(iii)⇒(i) Suppose (iii) holds. It is well known (Theorem 6, [K]) that the Köthe’s

problem has a positive solution if and only if it has positive solution for algebras
over fields. Henceforth let T be a nil algebra over a field K. Our aim is to show
that J(T [x]) = T [x]. Let T ∗ denote the K-algebra with unity adjoined to T . Then
N(T ∗) = T , T ∗/N(T ∗) = K. Moreover, by the first part of Lemma 1.2, T ∗ is a clean
ring. Thus, the statement (iii) and Theorem 2.14 imply that Cl(T ∗[x]) = T ∗+T [x].
This means, in particular, that T [x] = N(T ∗)[x] ⊆ Cl(T ∗)[x] and Theorem 2.9
yields that J(T [x]) = T [x]. �

We conclude the paper with the simple observation that for any ring R the set
of clean elements of R[[x]] is precisely Cl(R) + R[[x]]. We leave the easy proof of
this fact to the reader.
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